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We present a novel formalism for the generation of integral equations for the 
distribution functions of fluids. It is based on a cumulant expansion for the free 
energy. Truncation of the expansion at the Kth term and minimization of the 
resulting approximation leads to equations for the distribution functions up to 
Kth order. 

The formalism is not limited to systems with two-body interactions and 
does not require the addition of closure relations to yield a complete set of 
equations. In fact, it automatically generates superposition approximations, 
such as the Kirkwood three-body superposition approximation or the Fisher- 
Kopeliovich four-body one. 

The conceptual approach is adapted from the cluster variation method of 
lattice theory. 

KEY WORDS: Liquid theory; distribution function theory; integral 
equations. 

1. I N T R O D U C T I O N  

The goal  of  the s tat is t ical  mechanica l  theory  of  l iquids is: given the inter-  
ac t ions  between the molecules,  predic t  the structure,  t h e r m o d y n a m i c  
proper t ies ,  and  range  of  s tabi l i ty  of  the l iquid phase.  ~1) The  difficulty here 
does no t  lie in the pr inciple  involved,  since all one has to do  is to evaluate  
the a p p r o p r i a t e  pa r t i t i on  funct ions and  ensemble  averages,  but  a prac t ica l  
one:  in all but  the mos t  s imple of  cases, theory  requires one to per form a 
feat tha t  surpasses  all conceivable  levels of c o m p u t a t i o n a l  effort. Thus,  
l iquid theory  is a p p r o x i m a t i o n  theory,  and  a weal th  of techniques has been 
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employed to generate approximate theories for at least the first few of the 
k-body distribution functions g(k)(rl,..., rk), from which structure and 
thermodynamic properties may be inferred: diagrammatic techniques, 
functional differentiation, perturbation methods, and density functional 
methods, to name a few well-known approaches. (2'3) 

The same problem of approximation is, of course, central to the theory 
of phase behavior of the solid state. The localization of the atoms allows 
for a space discretization (lattice models), which considerably simplifies the 
mathematics of the statistical aspects of microscopic theories; consequently, 
for lattice models the field of analytic approximations (as opposed to 
numerical simulation) has reached a mature stage, where almost all 
approximate theories can be understood and derived within the framework 
of a single formalism, namely the generalized cluster variation method. (4-6) 
In this formalism a M6bius transformation (7) is used to generate a 
cumulant expansion (8) for the free energy, and approximations result from 
minimization of truncated versions of this expansion. 

Here we present an adaptation of that same formalism to the liquid- 
state theory. It is conceptually very simple and straightforward, it is not 
limited to systems with only two-body interactions, it is free from auxiliary 
assumptions such as the closure relations employed in the Yvon-Born- 
Green theory, and it is free from the fairly arbitrary choices that must be 
made in applying functional differentiation methods or density functional 
theory. The only freedom is in choosing the number of terms to be kept in 
the cumulant expansion of the free energy. This also means that the way to 
improve upon any given approximation is clear: include the next term, 
involving the next-higher-order distribution function. The formalism 
applies to homogeneous and inhomogeneous fluids alike. 

While the conceptual advantages of our approach are thus manifold, 
and it parallels a method proven to be highly successful in solid-state 
theory, we want to make clear from the outset that at present we make no 
claims as to its practical usefulness. The algebraic complexity is such that 
it is unlikely that more than four or maybe five terms in the cumulant 
expansion can be kept, and so far only preliminary numerical calculations 
have been done (using a pairwise Lennard-Jones potential). However, it is 
our belief that even as a purely theoretical exercise the approach presented 
here is of value, in that it may help gain a better insight into the structure 
of other approximate theories. One interesting result in this direction is the 
following: keeping K terms in the cumulant expansion results in a set of 
equations for the first K distribution functions; the equation for g(K) has 
the form of a superposition approximation. In this fashion, we can derive 
both the Kirkwood superposition approximation (9) for g(3) and the Fisher- 
Kopeliovich relation (1~ for g.(4) 
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In the next section we shall introduce the cumulant expansion for the 
free energy. This is done in the formalism of the canonical ensemble. The 
minimization of the truncated free energy expansion is discussed in Section 3. 
The resulting equations for the distribution functions depend explicitly on 
the number of particles N and the volume V, and it is necessary to derive 
their asymptotic form, valid in the thermodynamic limit N, V--* ~ ,  with 
p---N/V fixed. Sections 4 and 5 present details of the asymptotic analysis 
for the cases in which three and four terms in the expansion are kept. We 
limit our presentation to the case of a homogeneous fluid, to avoid 
excessively tedious algebra. Section 6 contains concluding remarks. 

The equations of the triplet approximation of Section 4 and the quartet 
approximation of Section 5 have also been obtained by Kikuchi and 
Van Baat in an earlier attempt to adapt the cluster variation method to the 
theory of liquidsJ 11) They started from a lattice-based formulation and then 
considered the limit of the lattice constant going to zero. The approach 
presented here is more direct and stays within the continuum space 
formulation. 

2. A C U M U L A N T  EXPANSION FOR THE FREE ENERGY 

We use the canonical formalism and thus consider N identical particles 
of mass m in a volume V. The particles are numbered 1 to N and they 
interact with k-body potentials ~ ) ( r  1 ..... rk), k = 1 ..... N. If the particles 1 
to N are at positions rl to ru in the volume V, then the potential energy 
of the system is 

N 

E(N)( r1'' ' ' '  rN)=  2 ~ ~(k)(ril ..... rik ) (1) 
k = 1 k - tup le s  

{ i l , . . . , i k }  = {1, . . . ,U} 

We assume that each potential function ~x)  is invariant under permuta- 
tion of its arguments. The one-body potential ~1~ describes an external 
force field. 

We now consider the joint probability of finding particle i in a volume 
element drl at ri, i =  1,..., N and we denote the associated probability 
density by P(N)(r 1 ..... rN). For the situation of thermodynamic equilibrium 
this density is 

p(N)[, exp [ -- fiE (N)(r 1 eq ' ' 1  ..... rN) = Z N  1 ..... rN) ] (2) 

where ZN is the configurational integral 

ZN( V, T ) =  f v u dUr exp[ -- flE(U)(rl ..... ru ) ]  (3) 

and f l=  (kBT) i. 
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For any such probability density p(N), not just for the equilibrium one, 
we may define the n-particle density functions p~) by 

p~)(r 1 ..... r~) N! ( N -  n)! f dr .+ 1"'" drN P(lV)(rl ..... rN) (4) 

(Integration over a particle coordinate is implicitly assumed to be over the 
volume V.) 

The n-particle distribution function g~) is traditionally defined as 

g~)(rl,..., rn)= p~)(rl ..... r,) 
1-[7=1 P (N1)(ri) (5) 

but for this work we found it more convenient to work with slightly 
modified functions, 

G~)(ri,..., rn) = p-"p~)(rl, . . . ,  r,) (6) 

where p denotes the average particle density, p = N/V.  For a homogeneous 
system, for which the local density p(ul)(r) equals the average density p, the 
G-functions are identical to the distribution functions. 

The G~ ) satisfy the following reduction relations: 

/* 

p J drn + 1 G~ 
+ 1)[  r , 1 ..... r ~ + l ) = ( N - n ) G ~ ) ( r i , . . . , r ~ )  (7) 

and they are normalized according to 

N~ 
p" f d r l . . . d rn  G~)(rl ..... r,) = 

( N - n ) !  
(8) 

The excess internal energy U N of the system in a state described by a 
probability density P(U)(rl,... , rN) is 

U N : f d r i . . "  drN P(N)(r 1 ,..., rN)" E(N)(rl ,..., rN) (9) 

We introduce a configurational entropy ~conf by the definition ~ N  

t" 
s c o n f  -- | dr1 .. drN P(N)(rl ,..., rN) log P(N)(r 1 ,..., rN) (10) N ~ d 

The difference fl U N - ~oo~f takes its minimum value if and only if the ~ N  

probability density p(U) equals the equilibrium density p(m [Eq. (2)]. 
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Consequently, this equilibrium density may be characterized by the varia- 
tional principle 

min { f l U  N -  ~ c o n f ' ~  (11) 
p(N) ~ N ) 

rather than explicitly by Eq. (2). We shall use this variational characteriza- 
tion, which of course is just the statement that in thermodynamic equi- 
librium the free energy of the system takes its minimum value, to set up a 
hierarchy of approximations. 

Since all the potential functions r are, by assumption, invariant 
under permutation of their arguments, p~X) has the same invariance, and 
we may restrict the variation in Eq. (11) to such invariant probability 
densities. Consequently, we shall consider only probability densities p(U) 
that are invariant under permutations of the arguments. The functions G~ ) 
then inherit the same invarianee property. 

The energy UN may then be written as 

U N  [ = 1  ~'"~ UN= ~ d r l . . . d r  k rg) ~b(k)(rl ..... rk) (12) 
k = l  ~ 

This representation derives its usefulness from the fact that the contribution 
of the k-body potential (b (k) is expected to decrease rapidly with increasing 
k. Actually, many systems are adequately modeled with two-body poten- 
tials only. The idea behind the transformation to be defined below is to 
isolate k-body contributions to the configurational entropy in a similar 
manner, so that they also decrease rapidly with increasing k. Thus, to 
express w ~ in a way analogous to the energy representation of Eq. (12), ~ N  

we define transforms 7~ ) of the functions G~ ) as follows: 

l~ = ~ ( - 1 )  " -k  Z l~ (13) 
k=l (it,..,ik} = {1 ...... } 

The second summation is over all the subsets of k elements of the set 
of indices {1 ..... n}. The definition makes sense since the G~ ) have the 
invariance property mentioned above. The 7~) share this property. The 
inverse of Eq. (13) is 

log G~)(rl ..... r,) = ~ Z log 7~)(ri~ ..... rik) (14) 
k = 1 {il,...,ik} = (1 , . . . ,n} 

Comparing this equation with Eq. (1), one sees that the relationship 
between log G and log 7 is the same as the relationship between the energy 
E and the potential q~. It is a version of a cumulant expansion that is meant 
to separate contributions from all the subgroups of particles within the 
total system of N particles. 
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With the help of the 7-functions, the configurational entropy ~r176 may ~ N  

be expressed as a sum, analogous to the sum representation of UN in Eq. (12). 
The transformation leads to the following representation for the difference: 

~rr e~o,f_ - l o g  N! + N log p + drl ... dr~ G~)(rl ..... rk) / " ~ N -  ~ N  - -  ~ ]  
k ~ l  

X [fl(io(k)(r I ..... rk) + log 7~)(rl ..... rk) ] (15) 

Approximations are generated by truncating the summation in this 
expression at k = K. The resulting approximation for f lUN--S ~176 will be 
denoted by F~ m. Equations for G~ ), k = 1 ..... K, will follow from minimizing 
F(N m, in accordance with the variational characterization of thermodynamic 
equilibrium expressed in Eq. (11). In the final step the asymptotic form of 
the equation for N, V--* oo with p = N/V  fixed will be derived. 

3. M I N I M I Z A T I O N  OF T H E  T R U N C A T E D  C U M U L A N T  
E X P A N S I O N  

We proceed to find the functions G~ ), k = 1 ..... K, that minimize the 
truncated expansion for flUN--~r 

~ N  �9 

F ( N K ) = - - l o g N ! + N l o g p +  -~. dr l . . .drkG~)(r~ ..... rk) 
k = l  

x [fl~(k/(rl,..., rk) + log  7~)(rl,..., rk)] (16) 

Note that F~ K) is a functional of G~ K) only, since this function determines 
all the lower-order functions (;,(k) for k = 1 ..... K -  1, through the reduction ~ N  ' 

relations (7), and the collection GE l, k =  1 ..... K, determines all the 7~ ), 
k =  1 ..... K, through Eq. (13). At its minimum value the functional F~/~) is 
stationary with respect to variations 6G~)(rl  ..... rK) that are invariant 
under argument permutations and that satisfy the condition 

f dr1 ... drK 6G(NK)(rl ,..., rK) = (17) 0 

[Equation (17) is a consequence of the normalization condition (8).] A 
straightforward calculation translates this stationarity requirement into the 
following equation, which may be regarded as the basic equation of this 
approach: 

(K-k)!  rik) 
k=l ( N - k ) !  (i~,...,i~} ~ ~l,...,x} 

+log  (k) (18) 7N (ri~ ..... rik ) } = const 
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In combination with K - 1  reduction relations linking G(~ ) to G(N 2) to ... 
to ~(/~) this equation determines the distribution functions that v N 
approximately describe thermodynamic equilibrium. The constant is 
determined by the normalization condition (8) applied to any one of the 
G's. 

In the next sections we shall consider two specific approximations and 
derive asymptotic forms of the equations valid in the thermodynamic limit 
N =  p V---, oo. 

4. THE TRIPLET A P P R O X I M A T I O N  FOR A 
H O M O G E N E O U S  FLUID 

In this section we consider the triplet approximation, which results 
from taking K = 3 in the foregoing. That is, all contributions to the internal 
energy and the configurational entropy that involve distribution functions 
of order 4 or more are neglected. 

For notational convenience we introduce another set of functions 0 ~  ) 
by 

rk )  - -  ~)X ( r l  ,-.., r k )  e x p [ f l ~ ( r l  , . . . , r k ) ]  ( 1 9 )  

We also introduce a shorthand notation for the functions g, G, 7, 0, and 
~b by dropping the subscript N that refers to the size of the system and 
indicating the argument list and the order of the function by a list of 
subscripts and their total number. Thus, ~34 stands for 7~)(r3, r4), IJ}12 3 

stands for tP(3)(rl, r2, r3) , etc. 
With this notation and K--3,  Eq. (18) yields 

2 1 
( N -  1)(N-2)10g(010203)  + ~ - - ~  10g(012023 031) 4-log 0123 ~" const 

(20a) 

We may take the constant on the right-hand side of this equation to 
be zero if we agree to change the potentials ~b by additive constants 
afterward so as to satisfy the normalization conditions. With this 
convenient choice, Eq. (20) can be rearranged to read 

G123 - G l z G z 3 G 3 1  GIG2G3 e-[3~123(012023031)-l/(N-2)(010203) 2/(N 1)(N 2) 

(20b) 

Since the reduction relations that couple the various G's are not 
readily applied after the thermodynamic limit N, V---, oo has been taken, 
we combine them with Eq. (20b) at this stage of the proceedings. 
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Integrating Eq. (20b) over r 3 and using Eq. (7) with n = 2, we can 
divide both sides of the equation by G12 and rearrange the result to obtain 
the following equation: 

(012)1/(N 2)(@1~I2)2/(N--1)(N--2) 

: P fdr3(73T13723e-B~123)(023@31 ) 1/(N 2)(03  ) 2/(N I)(N--2) 
N-2 

With the abbreviation 

j(2)~r 
N t ' l ,  r2) ~ J12 

:- { N ~  f dr3 (~/3713)~23e-~123)(I/123~t31)-l/(N-2) 

• (0~)-2/~ ~-  1~-2~} ~-2 

this reads 

(21) 

leads to 

~kl = (J1)1/2 (24) 

We now collect Eqs. (20), (22), and (24) into the set 

1 2 
log ~0123- N----~ l~ ( N -  1)(N--2)l~ (25a) 

2 
log ~k 12 = log J12 - N------~ 1~ ~2) (25b) 

1 
log ~1 = ~ log J1 (25c) 

012 = J12(~tl~2) 2/(N-- 1) (22) 

Next, we isolate G12 by rearranging Eq. (22): 

G l z = G 1 G 2  e ~t2j12(0102 ) 2/(N 1) 

Integrating over r2, dividing by G1, rearranging, and introducing J~) by 

J ~ ) ( r l ) -  21 - dr 2 (]/2212e-13q512)(i]/2)=2/(N !) (23) 
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We have used the reduction relations that define G1 and Gl2 in terms of 
G123 [cf. Eq. (7)] to derive Eqs. (25b) and (25c) from Eq. (25a) [which is 
Eq. (20a) with the constant chosen to be zero, i.e., absorbed into the inter- 
actions]. Hence the above set of three equations is equivalent to the set 
consisting of Eq. (20a) plus the two reduction relations. It is a convenient 
starting point for the consideration of the thermodynamic limit, to which 
topic we turn next. 

We shall only consider the case of a homogeneous fluid here. The 
local density p~l)(r) then equals the average density p everywhere and 

(1) 7w (r)= G~)(r)= g~)(r)= 1. This explicit information replaces Eq. (25c). 
(Obviously, the potentials must allow for a homogeneous equilibrium 
state.) The asymptotic ( N ~  ~ )  form of Eq. (25a) is clearly 

log ~23 = 0 + O(1/N) (26) 

To find the asymptotic form of Eq. (25b), we must consider the 
asymptotic form of log J12. The reduction relation (7) with n = 2  can be 
rearranged to read 

p f dr 3 '~3))13])237123 = N -  2 (27) 

Equation (25a) implies that to leading order, 7123=exp(--flqb123). These 
observations imply that the integral in the definition of J12, Eq. (21), is 
roughly (N-2)/p. This leads us to write 

{ ~ 2 f  e fl~123~ log J12 = ( N -  2) log dr3  (̂ /3~13723 I 

X (~t23 i//31 ) - 1/(N 2)(i/13 ) 2/(N--I)(N--2)} 
= ( N - 2 ) l o g  {1 +NP-~_2f dr373(Y13723e-#r + 1) 

q_NP~2 f dr3 (];3])13,23e ~,23) 

X (~t231//31)-- 1/(N" 2) (~t3)--2/(N 1)(N--2)__ 1)} 

where we have used that 

P f dr2 72712 = N -  1 (28) 

which follows from Eq. (7) with n = 1. 
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We now expand the above expression in powers of N -z, boldly 
assuming that our manipulations can be justified in a mathematically 
rigorous fashion. We shall freely interchange summations and integrations; 
moreover, we make the following assumptions as regards the order of the 
integrals that we shall encounter (recall that all coordinate integrations are 
over the volume V= N/p): 

1. Integration of any product of factors ~ and/or factors exp(-fl~b) 
over a coordinate r; yields a result of O(N). 

2. Integration of any integrand that contains a factor log 01...k over 
one or more (up to k - 1 )  coordinates ri out of rl ..... r~ yields a 
result of O(1); integration over all k coordinates yields a result of 
O(N). 

The first assumption is based on the expectation that such an 
integrand will approach unity if any coordinate becomes very large, and 
the second assumption derives from the expectation that the quantity 
fiUN-- SN should be proportional to N for large N and that the same holds 
for each of the separate contributions in the expansion of Eq. (15). 

With the abbreviation 

E l 2  = P f dr3 ~3(713723 e-/~'~23 - ~13 - -  ~)23 '~ 1) (29) 

a straightforward calculation yields 

1 (E12)  2 
log J12 = E l 2  

2 N - 2  

N - 2  

Since the integral in Eq. (30) is O(1) according to our second assumption, 
we obtain the asymptotic form of Eq. (25b) as 

l o g 0 1 2 = E 1 2 + O ( 1 )  (31) 

Collecting our results from Eqs. (26) and (31), assuming sufficiently 
smooth behavior so that the O(1/N) terms can be neglected, using 
homogeneity to substitute unity for 7(1)(ri), and reexpressing the equations 
in terms of the standard pair and triplet distribution functions g(2) and g(3), 
we find 

g123 ---- g12 g23 g31 exp( - fl~123) (32a) 

g12=expI-fl~12q-pfdr3(g13g23e /~123--g13--g23q-1)] (32b) 
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Recall that we adopted the convention that the potentials 4 (2) and 
~b (3) incorporate the freedom of an additive constant each, to allow for 
proper scaling of g(2) and g/3). Proper scaling is best effected by using the 
fact that the distribution functions should approach unity whenever the 
separation between any two of their arguments approaches infinity. It 
follows from Eq. (32) that this can be ensured by adjusting the potentials 
so as to approach zero for infinite separations, which is the usual choice 
anyway. 

Equation (32a) is an explicit equation for the triplet distribution 
function, which in the absence of a triplet interaction, i.e., ~3)_= 0, is seen 
to be just the Kirkwood superposition approximation. It is an automatic 
result of our formalism rather than an additional assumption. Equation 
(32b) is an integral equation for g(2), which, in the absence of a triplet 
interaction and with the (standard) notations g12exp(fi~12)=y12 and 
g12 - ] = h12 , can be written as 

y12=exp (p f dr3h13h32 ) (33) 

This same equation results if the hypernetted chain (HNC) 
assumption (12) is combined with a linearized version of the Ornstein- 
Zernike (OZ) relation, (~3) as follows. The OZ relation, which defines the 
direct pair correlation function c (2), is 

h12 -c12 = p  f dr3 h13c32 (34) 

A version linearized in p is 

h12 - c12 = p f dr3 h13h32 (35) 

Upon combination with the HNC approximation 

Y12 = exp(h12- c~2) (36) 

this produces Eq. (33). In this sense our triplet approximation for g(2) is a 
linearization of the HNC approximation, just as the Percus-Yevick (PY) 
app roximation~14) Y12 = 1 + h12- c~2 can be considered as such. 

It is also possible to obtain the PY equation from Eq. (33) by linearizing 
the right-hand side as follows: 
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YI2 = 1 + p f dr  3 h13h32 + O(p 2) 

= l + p f dr3h13932 ( 1 -  1-~-) + 

= 1 + p  f d r  3 h13 g32[1 - exp(flq~32)] + O(p  2) 

Dropping the 0(,0 2) te rm now results in the PY equation. 
Two comments may be in order. First, to truncate the general equation 

(15) and to minimize the expression in Eq. (16) is exactly the basic procedure 
of the cluster variation method for lattice models. Second, the fact that 
Kirkwood's superposition approximation (32a) is derived from this trunca- 
tion procedure can be interpreted as this truncation (the very basis of the 
cluster variation method) being equivalent to the closure procedure which 
uses the superposition approximation. 

5. THE QUARTET A P P R O X I M A T I O N  FOR A 
H O M O G E N E O U S  FLUID 

In this section we present the next higher approximation out of the 
hierarchy, namely the quartet approximation, which results if we take 
K =  4 in Eq. (18). Again we incorporate the constant on the right-hand side 
of that equation in the potentials. The quartet version of Eq. (18) then 
leads to 

1 
1og01234 -- - -  1og(01230124~t1340234) 

N - 3  

( N -  2 ) ( N -  3) log(0 12 0 13 I//140//23 @ 24 @34) 

6 
- ( N -  1 ) ( N -  2 ) ( N -  3) log(Ol ~2t)3~4) (37) 

In exactly the same fashion as in the treatment of the triplet equation, 
we use the reduction relations to derive the following equations: 

2 
log 0123 = log J123 -- ~ l~ 013 ~P23) 

log(~l q,2q,3) (38) 
( N -  1 ) ( N -  2) 
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with 

and 

with 

J123 = [ ~  3 I dr 4 -/~,~m4 (~) 124 3) 134 3)234 ~ 14 3)24 ~ 34 3)4 e ) 

X(I//1241//1341//234 ) I/(N 3)(ff1141//241]/34 ) 2/(N--2)(N 3) 

--6/(N-- 1)(N-- 2)(N-- 3)] N - 3  • (~/4) J 

1 _ N3_ 1 log(~Ol~k2) l og  ~12 = 2 log J12 

(39) 

(40) 

J12 = I N - ~  f dr3 73713723J123e fl~123 (~113~123) - 2/(N- 2) 

I 
N--2 

X (03) -6/(N-1)(N-2) (41)  

Note that J12 for the quartet approximation is not identical to the J12 we 
defined earlier for the triplet case. 

We can also write a similar equation for log @1, but since we shall 
again restrict our attention to homogeneous fluids, we shall not need such 
an equation, but will use the explicit knowledge y(1)(r)= 1 to complete the 
set of equations. 

The final step is to find the asymptotic form of Eqs. (37), (38), and 
(41), valid for large N and V, with p = N/V fixed. The asymptotic form of 
Eq. (37) is clearly 

log 01234 = 0 + O (~IN) (42) 

In finding the large-N behavior of log J123 we employ the reduction 
relations [Eq. (7)] with n = 0, 1, 2 and 3 in the form 

p f dr474=N 

p f d r  4 3)4714 = N -  1 

P f dF4 743)14~24~124 = N - -  2 

p f dF 4 3)47147243)3413124~1347234~)1234 = N - -  3 
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to write 

f ,~ --fl~1234 log Jlz3 = ( N - 3 ) l o g  1 + S ~  f dr4 (74714 ]224734~124"1 ~347234 e 

- -  7471412247124 - -  324714323412134 - -  74~247347234 

+ 74714 ~- ~)4~)24 -]- 74734 - -  74) 

(74 714724734 7124 71347234 e ) +NP~3fdr4 -- flcJ~1234 

X E(I/II241/I134~J234) - 1 / ( N - 3 )  (1//141/t241]/34) - 2 / ( N - 2 ) ( N - 3 )  

6/~N I~N 2~N 3~_1]  } >((I//4) 

We introduce the abbreviations 

E123 = p f dr4 (7471472473471247134~)234 e 
flq51234 

- -  74714724~)124 - -  ~4~) 147347134 - -  74724~/34~234 

"1- ~4714 + ]74724 -]- 74734 - -  ~4) (43) 

and 

F123 = P I dr4 1-74~) 14 7247347124 7 134~234 e -/~r 1 o g ( ~  124 I/t 134 ~ 234) "] ( 4 4 )  

Then, employing the rules of operation as assumed in the previous section, 
we can write 

(E123)2 F123 ( 1 ) 
log J123 = E123 2 ( N -  3) N-----~ + O ~ 5  (45) 

so that we find the asymptotic form of Eq. (38) to be 

logO123= E123 + O (1) (46) 

The O(N 1) contributions to J123 will play a role in the asymptotic 
behavior of J~2, which we shall consider next. In the by now familiar way 
we derive 

; (1) logJ12=P dr373(713723J123e- - -  713 - -  ~23 -1- 1 )  -~- O 
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into which result we substitute the expansion for J123 that follows from 
Eq. (45) to find 

log Ji2 = P f dr3 3)3(~J13723 eE123 - -  f l ~ : ' 1 2 3  _ _  713 -- 723 + 1 ) 

p2 
f dr3 73713723 eE123 -/7'/'123 

N -  3 J 

X f  A , flq[~123 ( ~ )  dr4 74 i) 147247347124)~1347234 e log 0124 "JF O 

The second term results from part of F123 and is kept since the integral is 
O(N): interchanging the order of integration and using [cf. Eqs. (42) 
and (46)] 

e /3'a51234 = 71234 -t- O (~IN) 

eE123-,8'I9123 = 7123 -1- 0 (-1) 

we see that this second term is 

p2 
r dr4 log 0124 N -  3 J 747147247124 

xf  dr3173'))137237437123~/1437243"))1243-+O(1)] 

N -  3 J dr4 ~)4~)i4~247124 log 0124' N 3 

= --pfdr3])3713723712310gO123+o(l[) 

and thus 

t" 
log J12 = P J dr3 73(713723 eel23-/7q~123 -- 713 -- 723 31- 1) 

Since Eq. (46) only determines 7123 to leading order and O(1/N) 
contributions may not be neglected if 7123 occurs in an integrand, we must 
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replace the factor ])123 log 0123 by an expression in terms of E123. From 
Eqs. (38) and (45) 

(E123)2 F123 2 " ' ' " ~  "-~'~ ( 1 )  
log 0123 = E123 2 ( N - 3 )  N - 3  N-, , l~ 1, 

from which one may deduce that 

P f dr3 ])3])13])23])123 log 0123 

=p f dr3])3])13])23E123eE,23 //~123_p f dr3 ])3.)s13723])12310g 0123 

- 2 1 ~  012+ O ( N )  

which yields the following relation: 

P f dr3 ])3])13])23])123 log 0 1 2 3  

= - log 012 + ~ P dr 3 ])3])13])23E123 eE123-/~'/h23 --}- O (48) 

Combining Eqs. (40), (47), and (48), we find for the asymptotic form of 
Eq. (40) 

log 012 = P f dr3 ])3(])13 ])23 eE123 -- J3~123 - -  ])13 - -  ~23 + 1 ) 

f d r  3 73])13Y23E123 eE123-flCq23 q- O (49) 

Collecting our results, dropping the O(1/N) terms, and expressing the 
equations in terms of the standard quartet, triplet, and pair distribution 
functions, we obtain, after some rearrangement, the following set of 
equations for the homogeneous fluid: 

g123 g124 g134 g234 
g 1234 --  exp( - -  f l ~  1234) (50a )  

g12 g13 g14 g23 g24 g34 

g123=gz2g23g31exp[_l~123+pfdr4(g1234 g124 g134 
\ g123  g12 g13 

--g23-'---~4-l-g14+g24+g34--l)]g23 (50b) 
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- - 2  I 0 1  ~,3 g 1 2 3 (  g123 "k l ]  _ dr 3 -  /3~12 3 + l o g  (50c) 
g12 g12 g23 g31 /  J 

Equation (50a) has the form of a superposition approximation. For 
(b1234 = 0  it is just the relation proposed by Fisher and Kopeliovich. Here 
it is generated by the formalism itself. 

The additive constants that have been absorbed into the potentials 
must again be adjusted so that the potentials approach zero at infinity. 

6. C O N C L U D I N G  R E M A R K S  

We have presented a new formalism for the generation of integral 
equations to approximate distribution functions of fluids. It is an adaptation 
of the conceptual approach underlying the cluster-variation method 
(CVM) of lattice theories. It is straightforward and generally applicable; it 
can handle many-body interactions and inhomogeneous fluids. 

This work represents the very beginning of a new application of the 
ideas behind the CVM. There are many important questions that we 
cannot answer at this stage; in particular, we do not want to make any 
claims as to the accuracy of the approximations. Nevertheless, we want to 
lend credence to our approach by showing one result of a first application 
(which will be presented in full detail in a forthcoming publication). It 
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Fig. 1. Density profile of Lennard-Jones fluid between attracting walls. (--) Linearized 
triplet approximation, ( - - )  Monte Carlo simulation. The temperature is given by kT/e = 2, 
with e the Lennard-Jones energy parameter. 
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concerns an inhomogeneous system; although we have not presented the 
equations for the inhomogeneous case explicitly, they can be derived in a 
straightforward manner in our formalism, as stated earlier. The example 
that we show in Fig. 1 concerns a fluid that is confined between two 
parallel walls. The fluid-wall potential is attractive and exponentially 
decaying; the fluid molecules interact with a truncated Lennard-Jones 
potential. The walls are six molecular diameters apart. We used the triplet 
approximation of our approach. In the inhomogeneous case this results in 
two coupled integral equations that must be solved. We simplified these 
equations by linearizing one of the two with respect to the overall density 
p; the resulting approximation is referred to as the linearized triplet 
approximation for the density profile. 

In Fig. 1 its result is compared with the Monte Carlo simulation result 
for the same system. Note that this agreement is obtained without any 
input other than the wall and fluid potentials; state-of-the-art density 
functional approaches generally need structural information from the 
homogeneous fluid to achieve comparable results. A detailed presentation 
of the inhomogeneous equations and the numerical results will be given 
elsewhere in the near future. (15) 

NOTE A D D E D  IN PROOF 

The validity of the assumption that O(1/N) corrections may be 
neglected in the final equations may be questioned. A more detailed 
asymptotic analysis, to be presented in the near future, clarifies this point. 
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